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On the structure of Hamiltonian
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Abstract. A completedescription of the Hamiltonian operators is shown and a
~rDarbouxlemma. is proved(for somevaluesof theparameters)in theframework
of systemswith infinitedegreesoffreedom.

1. INTRODUCTION

The conceptionof the Hamiltonian formalismas it is well known now, hasin

its origin the notion of the Poissonbracket(see [1] for a motivation). In finite

dimensionalmechanicsthis meansthe following. Let M be the phasespaceof a
mechanicalsystem under considerationand ,~ = C~(M).The Poisson bracket
structureon M is just a local Lie algebrastructureon the realvector space~.

Denotingthe correspondingLie algebraoperationby { f,g} E .9 for f, g E ,~ we

have

~f,g}={—g,f} (skew-symmetry),

~{f,g}, h }+ {{g, h},f} + {{h,f }, g} = 0 (theJacobi identity).

<<Local>> meanshere that the operation (f, g) 4-* {f, g} is bidifferential, i.e.

operatorsXf : —~,~,Xf(g) = {f,g}, are differential for all fe .~. In fact, it
turns out that all operatorsXf are of the first order [21. Therefore a Poisson
bracket on M may be introducedvia the differential operatorof the first order
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F : ~-+D(M), where D(M) denotesthe ~-module of all C~vector fields on

M andF(f) = Xf. Thus,

(1) {f,g~=F(f)(g).

By this reasonan operatorF : .~—~~D(M)is called Hamiltonian if the bracket

}defined by (1) is the Poissonbracket. Immediately the following problem
arises:to classify (locally) Hamiltonianoperatorsunderdiffeomorphisms.

The famous<<Darbous lemma>> in its Hamiltonian form assertsthat two non-

-degenerateHamiltonian operators are locally equivalent if their underlying

manifoldshave the samedimension.By a non-degenerateoperatorwe understand
one satisfyingthe condition: ~ 0 iffdj= 0,fE ~, x EM. It is worthy

to point out that any non-degenerateHamiltonianoperatornaturally determines
a symplecticstructureon its underlying manifold, and conversely.Regulardege-
nerateHamiltonianoperatorsalso may be described[1], [3].

In this paper we analyzethe aboveproblem for systemswith infinite degrees

of freedomor, in physical terms, for fields. Surely, it is much moredifficult in

this case.E.g., it is not trivial hereto find the right formulationof <<the Darboux
lemma>>.

Our main results are the completedescriptionof the Hamiltonian operators

and the proof of <<the Darbouxlemma>> for somesmall valuesof n = the number
of independentvariables,m = the number of dependentones,and K = order

of the operator.The greaterpart of thesewas announcedwithout proof in 141.
[5]. In what follows, all manifolds,fiberings, maps,etc., are supposedto be C~.

2. PRELIMINARIES

In this sectionwe describenecessarynotionsandnotations.

Let ir : E -+M be a fibering, dimM = n, dimE = m + n, and Sec(ir) be the
set of local sectionsof ir. Therearenaturalfiberingsir~: jk (ir) -+ M. ir~ : Jk(ir) ~

+J
5(ir) 0~(s~k~~oo,where J”(ir) denotesthe k-jet manifold of ir. ForfE

E Sec(ir) we denote its k-jet at a point x EM by [f]~ and the corresponding
sectionof 1r~byj~(f).Obviously,ir~~

5oik(f) ‘i~(~t~
Let x1, . . . , x,~,u’, . . , ~m be local coordinateson E, x1 beinga basecoordi-

nateand u
1 being a fibre one.Then

x ,x,~ u’=p~ p~ l~<i~<m, Iu~k.

are local coordinateson J”(ir). Here a = (01, . . . , a’~)E IN° is a multi-index,

I uj = u~+ . . . + a’~,and the functions are definedby equalitiesp~°1k~’~=
= ~0f1,where u1 =f’(x) are the local equationsof f. If n = 1, we write p’
insteadof andx insteadof x

1. Thesameis aboutupperindices.Sometimeswe
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also omit ir if there is no risk of ambiguity.

<<The manifold>> J~(ir) is the inverselimit of the sequence- . . ~+Jk(ir) ~k.k -

J
0(ir) = E andby the algebra~(ir) of smooth functionsonJ~(ir)we

understandthe direct limit of thealgebrahomomorphisms~.k—1 :

(C~(Jk(ir)).Introducing subalgebras.(ir) = ir~k(C~~~(Jk(7r))C ,~(ir),k = 0. I,
we see that , (ir) C ,~k(1r), s ~ k, and therefore the algebra .~(r1 is

filtered by its subalgebras&~k(7r).Similarly, the ,~(ir)-moduleA’ = A’(J~(sr))
of differential forms of degree i on J~(ir) is defined as the direct limit of
C~(Jk(ir))~modulesA1(Jk(ir)) by maps~~kk~1~

Let A = U A,,~be a filtered algebra,then P = U is a filtered A -module, if

is an Ak-module and . . . C C ~ + 1 C . . . . For example,A’ is a filtered
~(ir)-module. If A is commutativeand P= U I~.Q = U Q~,are filtered A-mo-
dules, then a linear differential operator z~:P-÷Q over A, [6], is said to be

filtered if for any k, ~ c for somes dependingon k. Below, we con-
sider only filtered differential operatorsover .~(ir)and denoteby Diffk(P. Q)
the set of filtered linear differential operatorsof order ~ k acting from P to Q.
F, Q being filtered ,~(ir)-podules.Obviously, Diffk(P. Q) C Diff

5(P, Q). k ~<s.

DenotealsoDiff (P. Q) = U Diff~~(P,Q).
In local coordinates on J~(ir) described above a <<scalar>> operator i~E

E Diffk(.~(7r),.~(ir)) may be presented as ~ a~ ‘~~‘ ~“ ~/~p”

ap~ax’1’ . . . ~ summingby 1 (i1,..., ~r ~ m, ‘p J~E ~, a~. OrE

E lN’~’, 0 ~ r +/ ~ k. / = ~ j~,with coefficientsfrom .~ (ir). If P and Q are free
.~(ir)-moduIesover the local chart, then any ~ EDiff(P. Q) may be presented
by an operatormatrix with its entriesbeing scalardifferentialoperators.

Dk = —~-- + ~ + (k) ~ is the total derivative in Xk. where e(k) =

axk ~° ap0
= (0 0, 1, 0 0) has 1 as its k-th component.Scalaroperatorslocally
expressiblein the from ~ a0 D°, where a0 E 3~(ir),D°= D1

0’ o~ oD~°~,and

matrix operatorswith suchentriesarecalled C-differential.The set of C-differen-
tial operatorsF-~~Q is denotedC Diff(P. Q). Intrinsicly, an operatoris C-diffe-
rential if it can be restrictedon every submanifoldof J~(ir)having the form im

j~(f),fE Sec(ir).
The 3~(ir)-moduleD =D(J”~(ir))={z~EDiff

1(,9~(ir),.~(ir)):~(l) = 0} con-
sistsof all derivationsof the algebra.~(ir)interpretedas vector fields on J~(ir).

Let CD =D n C Diff(~(ir), ,~(ir))andDC= DC(lr) ={X ED : [X, CD] C CD}.
ThenDc is a Lie algebrawith the Lie operationbeing usualcommutator,and

CD is its ideal. So, we candefine the Lie algebrax (ir) = DC/CD interpretedas
the algebraof vectorfields on the <<manifold>>Sec(ir). [6].

In a local chart any field X E CD has the form ~ akDk. ak E ~(ir). and any
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field X EDC can be uniquely presentedas X = 3~.+ Y, YECD, where f=
= ~ fm), ~ E ~(ir), and = ~ D°(~)a/ap~is called an evolution

with a generatingfunctionf. Therefore in the local chart the algebrax (ir) may
be identified with the Lie algebraof all evolutionderivations.We have[3d..3g] =

=
31f,gl’ where [f,g] = 9

1(g) ~‘3g(f) is the higher Jacobibracket and 31(g) =

= (~(g1),.. . , ~ In addition, the Lie algebrax (ir) is an .~(ir)-module.
Identifying (locally) elementsof x(ir) with evolutionderivationswe have p 3/. =

=3~,,f~PE,~(ir).
Next we needto define<<functions>>on the <<manifold>> Sec(ir) to getHamilto-

nian formalismon it. To do that introduce~~(ir)-modules

CA’ ={~ E A’ :/~(f)*(w) = 0, VfE Sec(ir)}.

Evidently, CA = ~ CA’ is a d-closedideal in A = IA’. In particular, this

allows us to define the factor-operatord: A’ -+ A’ + 1 of d : A’ -+ A’ + 1, where
A’ = A’J’CA’. Locally elementsof A’ may be identified with ir~-horozinta1

forms on J~r) and expressedas ~2a~<k dxk A. . . Adxk, ak k E .~(ir).
1... 1 1 1... 1

In these terms the operatord acts as d(fdxk A. . . Adxk) = dfAdxk A.

A~Xk, df= E Dk(f)dxk. Now we define <<the function space on Sec (ir)>> to

be L = A”/dA~’. By abovelocally elementsof A” may be consideredas Lagran-

gian densities,while their equivalenceclassesmodulo dA~ 1 as <<actions>>, i.e.
functionalson Sec (it). Thisgives a motivationfor L.

Finally, we have to understandhow <<vector fields>> act on <<functions>,on

Sec(it). Let X(w) denotethe Lie derivativesof w E A’ along X ED and ~ =

= w + CA’ denotethe elementof A’ correspondingto w. If XE CD then <<the
infinitesimal Stokes’ formula>> X(w) = X I do., + d(XI w) reducesto the for-

mula X(~)=Xj +d(XJ~), where X(~5)=X(o.,)and XJ~=X.Jp.
It showsthatX(i5) = d(XI i~5)for ~i E A”, becauseA” +1 =

Therefore, the formula x(&
2) = [X(~)] defines correctly the Lie derivative

of ~2= [~3]E L along x = X + CD E x(ir), where [P1 denotesthe element of

L correspondingto p E A” by the naturalprojectionA” -~ L.

3. HAMILTONIAN OPERATORS

As in the classicalfinite-dimensionalcase a Hamiltonianoperatoron Sec (it)

must act from L (<<functions>>)to x (<<vector fields>>).Of course,suchanoperator

must be local, i.e. differential. But L is not an ,~(ir)-module.So, the usual
notion of a differential operatoracting on L is meaningless.However, A” is an
~(it)-module. Therefore,a differential operatoron L may be understoodas a

differential operatoron A” vanishingon dA” ~. Now we notice that the Euler
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operator ~ i.e. the operator assigningto Lagrangian densities corresponding
Euler-Lagrangeequations,vanisheson dA” -~. Moreover, in a sensewhich will
not be discussedhere, it is the universalone in the classof operatorsvanishing
on dA” -~ It can be shownthat the rangeof E is ~,whereP = Hom~,,(F, A”) for
an ,~-moduleF. Therefore,differential operatorson A”, which may be treated

as operatorson L, can be supposedhaving the form V o E, whereV is a differen-

tial operator on . Moreover, the operatorV must be C-differential in order
that V o E would have intrinsic sense. So, the above considerationsmotivate

the following

DEFINITION. The operator ~ = V ° E : A”-*x(ir) with V E CDiff(,~,x)is called

Hamiltonian if thebracket { , }definedon L by

(2) ~1’~2~ ~(w1X&~2),

where = [w1] EL, is skew-symmetricandsatisfiestheJacobi identity.

Here ~ denotesthe Lie derivative of ~2 E L along z~(w1)E x(ir).

To simplify terminology we will call operator V : -+ ‘~ Hamiltonian as well

as~= V o E.
Now we intend to prove a criterion for checking an arbitrary operator ~ E

E C Diff(~,x)to be Hamiltonian.To perform this we needsomegeneralformulae

describedbelow.

4. THE GREEN FORMULA AND THE EULER OPERATOR

For ~ E C Diff (F, Q) one can define the adjoint operator~ E C Diff(Q.P).
This star operationhas the usualproperties:(1) ~ = ~ fortE CDiff0(.~,A”);
(2) Z~= —~ for z~ECD; (3) (~oV)* = V* o~*; (4) (~*)*= i~. Theseimply
that (~a0Da)* = ~ l)

1°1D°o a
0 and (L~*)~~= ~ for a matrix operator.

If~E C Diff (F, Q) thentheGreenformulaholds:
(~(p)q)—(p ~*(q))rd)fç(q O~ op), pEP, q EQ.

Here (,) denotesthe naturalpairing R x R -+ A” for an f-module R, ?K : C Diff
(~, A”) —~ A” 1 is a C-differential operator definedup to adding an operator

of the form do r’ with v : C Diff ( .~, A”) —~A~~
2being C-differential, and we

identify an elementrER with the homomorphismr : .~-+R, ~ -+~pr,pE .~.

Next, the universal linearizationoperator.f,, E C Diff (x. F) for p EF, P being

an .~-module,is defined by .f~(f)= 3f(P). We assume here that 3~.acts on
vector-valuedfunctions component-wisely.Now we have the following formula
for Euler operator: E(w) = .f~(l).wE A”. Moreover, if ~ is C-differential then



265 AM. \Sl ASIIUV, AM. VINOLRAI)ov

(3) L(~(f)) = ~*(~*( 1)) +

Fhe next property characterizesthe image of Es locally ~ C im L iff l~= L.
Further, locally w C A°belongs to d(A° I) iff E (w) = 0. The formulae mention-

ed in this sectionare proved in [7]. seealso [6].

5. THE SKEW-SYMMETRY PROPERTY

Here we shall deducea property of ~ which yieldstheskew-symmetryof the

bracket , } defined by (2). We shall write sometimes w
1. w-, insteadof~f2~.~

if = [w11and ~~>> to denoteequalitymodulo JA~ I in ~°.

First of all, by definition ~w, p~= = (~(E wO. w. p C A
0. and

Lw)) K E~(I). ~(L w)) = K Lp. ~( Lw)) by the ;reen formula for ~. i.e.

(4) ~w.p}~(Ep. ~(Ew)).

This is the K<usual form>’ of thePoissonbracket. [8]. [fl]. Applying the (;reen

formula for ~ to the left side of (4) we see that w. p (Lw. ~F( Ep)). There-

fore.

{w. p} +~ p. w}~ (Lw. (~+ ~~)(Lp)).

and we searchwhen this expression 0 identically. Its right side may be present-

ed as V(Ep) with V = (Ew, (~+ ~*) (.). Then V(Lp) 0 iff L (V(Lp)) = 0

(see section 4). Applying (3) to the last expressionwe have

0= L(V(Ep))=~~(V*(l)) + ~~(l)(EP) forall pEAt2.

Obviously, every vector-valued function on J~(ir)dependingonly on x may be

locally presented as E (p) for some p C A°. But Lf = 0 for such functions.This

shows that C~*(fl(f)= 0 for all f dependingonly on x. Since is C-differen-

tial. this implies that £1~T~I) = 0. Therefore L (V( L p) = Et(V* (I)). Choosing

p to he ~ (u’)2dx
1 A . - . Adx~we see that is the identity operator.

Hence 0 = ~(V*(l)) = V*(l). —

So, V*(l) = (~ + ~XE w) = 0 for all w C A”. As above we see that ~ + ~ =

= 0 because ~ + ~ is a C-differential operator vanishing On all functions of x.

So we have proved

PROPOSiTION I. The bracket { .~ is ske-t-siinmetric 1ff ~ + ~“ = o. ~ ~

itself is skev-slnhIlietric. •
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6. HAM ILTONIAN CRITERIA

Now we are able to prove the basic result of the paper. If a C-differential

operator~ mapsvector-functionson M into vectorfunetionson J~~L~)(noting

M itself by J~(ir)). we say that its filtration is lessor equal to k and denote ii

as b(s) ~ k.

THEOREM 1. The sken’-simnietric C-differential operator ~ : x —* x i.s I/ann/to-

niail iff

(5) I = 0 ~ + ~ 0 (~ for all p C im L.

Moreoicr, it .ruffices to reri.fi’ (5) on!> for elementsp E k belong! ig to the image

of E and politioiiual jll X U~to f—tli oi-der components.(: = deg ~ + ~I’(~ (.

Proof In virtue of Proposition 1 we have only to prove that (5) is equivalent

to the Jacobiidentity for { . ,~. The last assertion of the theorem is true because

both sides of (5 are C-differential of order ~ as operatorsacting on ~ E im L

and henceare completely determinedby their action on the image of n~.

Further, rewriting the Jacobi identity as 0 H w.p. x }~—~p.w. x }~—{~w.p~.

x } = (F(w) o F(p) — F(p) 0 l’(w) — F( w. p~)(x) with F = o C we see that
it is equivalent to the operator equality [F(w), F(p)] = F( ca, p~) for all w.

p C A”. Identifying elementsof x with evolution derivationsand thehatterswith

their generating functions, we shall calculate the generatingfunctions of both

sides of the last equality. First, the generating function of [F(w). F(p (1 is

— 31.>~)(F(w))= L1.(~)(F(W))— 3~.(,,)(F(w)) = (~ ~ — 3,~~ 0

o~)(Ew).wherep= Ep.
Further, by (3) and (4). F(~w.p}) = ~(E( ca. p})) = ~(E (Ep. SEw))=

= ~(E~(V*( I)) + t~*(fl(~fl. where V = (Ep. ~( . )) and V~(l)= ~~(Ep( =

= —~(Ep).

Since = ~ we have

F({w. p~•)=— ~(EE~(~~(EP)) — ~E,,(E03)) =

Therefore. f~ o — 3,~ o = — o 3~.— o as operators on im L or.

equivalently [3~, ~J = f~ ~ + ~ 0 f~. But operators at both the sides of

this equality are C-differential. So they coincide completely, not only on

im E.

Now we shall illustrate the proved theorem at work.
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Example. Supposingthe fibering it to be linearwe considera differential operator

V : S -~ Sec(it), S = HomC~(,~(Sec(it), A”(M)). Then the formula /(f)* 0 V =

= V oj(f)* definesthe operator V E C Diff(,~,x).Evidently, if V is skew-sym-
metric, then V is too. It is easy to show [10] that [3f. VI = 0 for all f. This

leads to the equality f~ = V o .E~.So £~o~ + ~ o £,= ~ o (ç_.C*) o ~ if

= V. But .E~=.C~if pE im E. This shows that every skew-symmetricoperator

of the form V is Hamiltonian(com. [Ill). In what follows our main results will

be derivedfrom this theorem.Forapplicationswe needits coordinateexpression.

COROLLARY. The (m x ,n)-matrix skew-si’minetric operator ~ = ~, II s’,, =

= ~ A~J
1D°,is Hamiltonian iff

r ~ aA’~’ aAkI

I D~~°~~A° — D>~0 “A” —b—+
° a~ v—a 0

(6)

+~(_l)w X+O
p X—r U apj,

for all I (i, /, k ~ m and all multi-indicesp r’. Binomial coeffIcientsfor multi-

-indicesare definedby() = (~~... (),
It suffices to check (6) for p and v with p + v ~ deg ~ + max r + X

aA” I
:—~-~�‘0.

ap~

Now we proceedto describeHamiltonian operatorsfor somesmall valuesof
m, n and k = deg ~. We begin with establishingsome relations between‘I’(~)

and filtrations of ~‘s coefficients. In doing that some facts concerningthe C-

-Hamiltonianformalism will beuseful.

7. THE C-HAMILTONIAN FORMALISM

This is a variantof the <<usual>>Hamiltonianformalism lifted onJ~(ir).Namely,

let

Smblk(it) = C Difç(F, F)/C Difç_

1(F, F), Smbl (it) = ~ Smblk(it).
k~O
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For ~ E C Diffk(F, F) we write sk(.A) for its image in Smblk(it). It is easy to see
that Sk + k ~ = 0 if L~, C C Diffk (F, F). Therefore,the composition of

1 2
operators induces the commutative multiplication in Smbl (it), Smblk(lr)

Smbl1(ir)C Smblk + 1(ir). Moreover,Smbl (it) is a Lie algebra. The corresponding

bracket is defined by [s~C~), s1(V)I = Sk~~_~([~ VJ). Evidently. sk(1~*)=

= (~ 1)ks~(~).
In local coordinateselementsof Smbl (it) may be describedas polynomials

of p, = s1(D1), I = 1 n, with coefficientsin F(ir), and for f, g E Smbl (it)

wehave

n
[f,g]=~ —D1(g)——D1(f),

~

whereit is supposedthatD, (p,) = 0. For moredetailssee[11.

8. FILTRATION OF HAMILTONIAN OPERATORS OF THE FIRST ORDER

We supposehere that it is a one-dimensional fibering and ~ C C Diff1(k, x)

is Hamiltonian. In virtue of its skew-symmetry,~ has the form ~ (f~D~+

D.([)). Below we work in a local chart, identifyingx and ~with F.

LEMMA. 4(4) ~sodd.

Proof It follows from definitions that deg £~~F(4),if p’EC~(M).and the

equality holds for somep. Further,for suchp we have
5a+ ~ o ~ + ~ o =

= s
0(4) . sb(J.i~+ .C~).a = deg& b = 4(4). Therefore, supposing4(4) ~ 1.

for validity of (5). it is necessarythat 5a+b(L,~°~ + ~ o ~ = 0 because

otherwise deg [3~, ~] ‘~ degi~ <deg(~o ~ + ~ o .L~). So, if 4(z~)~~I, then
0 = S~,(I~+ .C~)= sb(C~)+ (— lY!~sb(.e~).The case 4(4) = 0 is evidently

impossible.

Remark. The conditiondeg~ = 1 is unessentialfor this lemma.

PROPOSITION2. 4(f,)~2.! = I. .. . , n.

Proof We write 4(f) = k if fE Fk\ Fkl. Let ~ = X + cs/2, X = ~f1D1, os =

= ~D~(J). The next two casesarisenow:

(1) (general)4(a) = max 4(f~)+ I and

(2) 4(a)’~max4(f1).
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First, supposethat (1) holds and p = max 4(f1)> 2. Then 4(o.) = p + I

and by the lemma p is even. This showsthat s~2(L~5~o~+ ~ o.f~)= 0, pC

E C~(M), or equivalently, that deg(.E~o ~ + ~ f~)~ p + 1. Therefore,
becauseof deg[3,~, ~] = 1 the equality (5) may hold only if s~~((‘~ ~ +

+ ~ o )E* ) = 0.

If p= 2~iEC~(M), then C~=~i~i~+ 2 L~>.Substituting it into +

+ ~ o .C~andperformingsome elementarycalculationswe obtain

~ + ~ 0 ~= q~- (X ~ + f) + [ç.X]) +

(7) + — o ~ + ~ L~ — + 2(C~~oX +X o (‘h,) +

~

~ because

deg.C,~= p + 1 and p is even. Similarly, deg(.C0 + ~) ~Cp. Also deg(~. o a +

+ a~ ‘~ p, because4(X(i,li)) ‘~ p. Using theseremarkswe obtain

s~(~ o ~ + ~ o /~) = ~j ‘(s1(X)s~(~+ J~)+

(8) + s~+ ~ X])) + 4s1(X)~ — XC,L’) ~ 1(g) —

—s1(X)s,~,([.L~,iJ.’I) = 0.

Let s1(X) = w = sf,, p~,s~<~ = v~s~(ILf.)= v~.Then v = ~ v1p~and for

i/I = x5 we haves1([.ç, i~i]) = ~v/ap5.

In thesenotations(8) maybe rewritten as

w ‘s,~(.L+,f*)+[v,w]= 0. for ~ = 1

and as f5v + w av/ap3 = 4 wv3, for i~i= x3. s = 1,..., n. Multiplying these
av

equalitiesby p3 and thensummingwe getthe equalityw - v + ~p3 ~— = 4 wv

av p3
or, equivalently~p3 = 3v. Therefore,by <<the Euler theorem>>v as a func-

ap3

tionson p3 is homogeneousof degree3. Thus degL,, ~ 3, i.e. 4(.~)’~3,4(f) ~ 2.

To finish the proofit sufficestoshowthattheassumptions4(a)~max 4(f1) =

= p> 1 are impossible. If so, p is odd by the lemma,and
*

Similarly, deg(.E~~oa + a o )E~)<p. Taking it into account one can deduce
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from (7) by the direct calculation that s(i~)= s~(.lL,~o~ + ~ ° .C~)= A ~i +

+ ~ (c3 ~-~- + ~ . wv~]).where A and C3 do not dependon ~i, and w =

= s1(X), v3 =S~(.Cf).Sinces(iLi) needsto be zerofor all iii E C~(M),if p> 1, it fol-

lows that A = C3 = ~ [~ ~ wv~]= 0. Substituting ~i = xsxk into the last

a(wv ) a(Wvk)
equality we obtain [wv3. XkI + [wvk .xSJ = + = 0 for all s, k

apk ap3

andhence WVk~~ a~p1.where do not dependon p1. 1 <j<n, and

+ = 0. But by assumptionnot all Uk vanish. Therefore, if Vk* 0. then WVk

is a non-zerohomogeneouspolynomial of p1 of degreep + 1 >2.

9. FILTRATION OF THE THIRD-ORDER HAMILTONIAN OPERATOR

In this sectionwe supposem = n = 1.

PROPOSJTION3.If ~=f3D
3+f

2D
2+f

1D +f0 is Hamiltonian, then fkEf~k.

k = 0,1,2,3.

Proof It is easy to see that every skew-symmetric operator of the third order has

the form ~=f3D3+~D(f3)D2+f1D+ ‘D(f1)— ~D~(f3). Because of

proposition2 we canassumethat f3 has no zerosin the domainof consideration.
Let s be the leastnumber with fk E ‘~—k’First, supposethats ~ 8. Then equations

(6) with v = 0, 1, 2, 3 and p = s + 3 — v form a linear homogeneousalgebraic

system with respect to f3 af3/ap5 ~ and .t’3 af1/ap3 which is of the rank 2.

Therefore. af3/ap53 = af1lap3_1= af2/ap3 2 = af0/ap3= 0, but this con-

tradictsto thechoiceofs. andhences ~ 7.

Further,all equations(6) with p + r’ = 10 are proportionalto

(9) 6 af1/ap6—5 af3/3p4= 0.

Forp + v = 9 we havea systemwhichmay be reducedto

(10) 38af1!ap5—23 af3!ap3—28D(af3/ap4)= 0.

(11) 6f3af3/ap3+ l9D(f3)af3/ap4—l4f3D(af3/ap4)=o.

Similarly, all equationsarising from (6) for p + v = 8 may be reduced to



274 A,M. ASTASHOV, A.M. VINOGRADOV

38

76f3af1/ap4—76af3/ap2— — f1af3/a,~—

(12) — 9D(f3) af3/ap3— 96f3D(af3/ap3)+

+ 40D(f3)D(af3/8p4)— 8of3D
2(af

3/ap4)= 0.

Differentiating(11) in p5 and(12) in p6, and substitutingin the result af3/ap4
instead of af1/ap6 in accordancewith (9) we obtain two linear independent

algebraicequationsonf3a
2f

3/(ap4)
2and(af

3/ap4)
2yielding af

3/ap4= 0.

Accounting the latter, system (9) —(12) reduces to af1/ap4 = af3/ap2.
af~/ap6= af1lap5= af3/ap5= 0 and as a consequence,af2!ap4 = af0/ap6=

=0. •

Remark. The l-Iamiltonian opeiator ~ = —~-- D o shows that proposition
p2 p2

3 gives an exact estimatefor
4(f1). This also shows the descriptionof the third-

-orderHamiltonianoperatorsgiven in [121to be incomplete.

10. HAMILTONIAN MAPS

To prove <<the Darbouxlemma>> we need the notion of a Hamiltonian map

which is analogousto that of a canonicaltransformationin classicalmechanics.
Themostnaturalis to introduceit in termsof the categoryof non-lineardifferen-

tial equations (ND). [6]. For simplicity we consideronly ND-coverings for

<<simple>> objectsof (ND), namely,for F (it). Becauseof all considerationsbeing
local we often deal with localizationsof L, x, ~ etc. using the samenotations

for them.
So, let it and it’ be fiberings over the basesof the samedimension n. and

F :J~(it)-*J~(it’) be a C~map.This meansthat foFE F(ir) for anyfE F(ir’).
Thus we have the homomorphismF* : ~(it’) -÷ .~(it) prolongableto the Gras-

sman algebra homomorphism F* : A(J~(it’))-÷A(J~(ir)) commuting with
the exterior differential d. The map F is calledan ND-coveringif F*(CA(it’)) C

C CA(it) and at any point U EJ~(it) the corresponding factor operator
A”(ir’) F(o)~~A”(it) 0 hasthe trivial kernel.

Every ND-covering is uniquely determined by the restriction F* F

0O~ or

by the correspondingmap F0 :J”(it) —*J
0(ir’), and conversely,such a map for

which the element F~’(dx
1A. . . Adx~)C A’

1(it) does not vanish, determines
an ND -coveringF satisfyingF* F

0t~= F~.

In particular, an ND-covering may be obtained from a diffeomorphism of
the fibre spaces or, if m = 1, from a contact diffeomorphism of the 1 -jet
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manifolds. ND-coveringsof that kind are called Lie transformations.Sometimes
we shall identify the mentioneddifffeomorphismswith the correspondingLie

transformations.
It follows from definitions that, given an ND-covering F :J~(it) -+J~(it’),

onecan define a linear operatorF* : L (it’) —~‘ L (it). Suppose it and it’ are equip-

ped with the Poissonbrackets{ , } and { , }‘, respectively.The ND-coveringF is

called Ha,niltonian if F*~h
1,h2}’ = {F*h>, F*h2 } for all h1, /12 C L (it’). In this

casethebracket , }‘is saidto be obtainedfrom { , } by F.

Note that a Lie transformationF determinesin a naturalway module isomor-
phismsF~: x(ir) —~ x(ir’) andF* : ~i(it’) —* Q(ir) over the algebrahomomorphism

F(ir’) —* F(ir). So the property of being Hamiltonian may be formulated in

termsof the correspondingHamiltonianoperators:

= F~ o o F*.

1 ~1

For example, the Hamiltonian operator — D o — in the previous section

may be obtained from D

3 by the contacttransformation(x, u, p) s+ (p. u —px.

— x).

Generallyan ND-covering does not induce any natural map of <svetor fields>>.

On the contrary, there exists the natural opeatorF* : ~(ir’) -+ ~ (it). It is due

to the fact that every form w C A” + generatesan element [w] = ~,(l) C R,

where ~ C C Diff (x. A”) is defined by z~(X mod CD) = X J w mod CA”.

If w
1, w2 C A” + generatethesameelementof ~, thenit holds also for F*(w1)

and F*(w2), F beingan ND-covering [13]. For Lie transformationsthis definition

of F’~ : ,7(ir’) —* ~7(ir)coincideswith the above.

Now, the ND-covering F is Hamiltonian iff F* (4’a, )3) = (4F*a, F*~3> for

all a, i3 C k(ir’). We emphasizethat, in general,F* : ~(it’) -÷?~(it)is not a module

homomorphism and therefore deg ~‘ doesn’t need to be equal to deg&

being obtainedfrom ~ by an ND-covering. Moreover, the existenceof ~‘ for

arbitrary ~ andF is not guaranteed.Now we proceedto establishnormal forms

of Hamiltonian operatorsunderLie transformations.

11. THECASEm=n=K=l

The operatorz~=f>D +f0 is said to be non-degenerateif f~nowherevanishes

in its domain.

THEOREM 2. Let 771 = ii = 1. Then ann two non-degenerateHamiltonian opera-

tors of the first order are locallj’ equivalent up to thesign undertheLie trail-

sformations.
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Proof In the caseaccordingly to proposition2, the Hamiltonian operatorshave

the form ~ =fD + D(f), with fE F
2. Becauseof non-degeneracywe 1i~ay

assumef to be positive.We shall prove existenceof aLie transformationtransfor-

ming ~ into D.

By direct calculationswe obtainthat system(6) for ~ is equivalentto

3D(f) ‘f~—2f.D(f~)+ 2f’f~= 0.

wherew = p2. which may be reducedto

(13) D(Q~)—Q~=0

by thesubstitutionf=Q
2.

Differentiating (13) in p

3 gives ~ = 0. which yields Q =aw + b. with a,

b C F1.
Now, let 4 be the set of all not vanishingfunctions~ C F1(ir) such that the

1 1
operator — o o — is Hamiltonian as well as ~. Inserting ‘pQ into (13) we

‘p

obtain that pE4 iff X’p= 0, where X =a a/ax +pa a/au—ba/ap is a vector

field on J
1(it). Obviously,X I (du —pdx)= 0.

Now we usean elementaryfact from contactgeometryleaving the readerto

proveit.

LEMMA. Let X be a vector field on Jt(ir) and XI(du —pdx)= 0. Then in a

neighbourhoodof anypoint whereXdoesnot vanish, there exist contactcoordi-

nates(~,i~,~) suchthat X = a/ak.

In thesecoordinatesthe function Q, determining operator ~, doesnot depend
on w. Moreover,in view of (13), Q C F

0. Therefore,this contacttransformation

reduces~ to f(x, u)D + ‘~- D(f). Finally, straightforward calculations show

that the diffeomorphism(x, u) ~ (x, ~ i/2 du) ofJ
0(ir) transforms ~ into D. *

Remark. Two Hamiltonian operators D and —D are not equivalentvia contact

trasformations.

12. THECASEm=n=1,K=3

The operator ~ =f

3D

3 +f

2D

2 +f

1D +f0is callednon-degenerateiff3nowhere

vanishesin its domain.
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ThEOREM 3. Locally any non-degenerateHamiltonian operator of the third

order. m = n = 1, may be transformedinto an operatoroftheform:

±D
3+ 2XuD +Xp,

by a Lie transformation, X being a non-negative constant.This form is unique.

Proof. Eqs.(6) for 6 ~ p + p ~ 8 and the proposition 3 imply that theHamilto-

nianoperatorshavethe form:

~ =f
3D

3 +f
2D

2 +f
1D +f0,

wherefkC Fsk andf3 satisfies

s(af3/ap2)
2= 4f

3a
2f

3/(ap2)
2.

Supposingf
3> 0, we obtain f3 = (ap2+ b)

4, a, b C F
1. It is easy to see that

thereexistsa function pC F1 such that Q = ‘p (ap2 + b) satisfies(13). So ~ has
‘5

the samesymbol as the compositionoperator~ x -÷F —* A
1 —~ x -

where ~ = — o D ° — is a Hamiltonian operator of the first order and the
iQ Q

homomorphismsx -# F, Ai 1 are inverse to those determined by ~‘ =

mod CD Cx. 1,11 = ‘p2E F
1. In virtue of the Theorem 2. ~ may be transformed

by a Lie transformationinto D, while ~ would preserveits form with another
function ~i C F1 since this form is equivalentto the existenceof a contactfield

X C ~. So, the operator~ after the transformationwill havea leadingcoefficient
(still denotedf3) belonging to F1. Now, equations(6) for 5 ~ p + v < 7 imply

2f3 ‘ a
2f

3/(ap)
2= 3(af

3/ap)
2.

which yields f
3 = (ap + OF

2 a, 13 C F
0. Choosinga function ‘p C F0 such that

d(’padu + ‘p~3dx)= 0, we obtain: ‘p -(ap + 13)dx= ‘padu + ‘p~3dx= d~Jí for

some i,li C F0. Therefore.f3 coincides with the leading coefficient of the composi-

tion operator

~ F A
1 F A~ F A~ x,

where the two homomorphismsA1 —~ F are inverse to those determinedby

di,1i C A1, while ?? —* F and A1 * x are the inversesof homomorphismsdetermined

by du A dx C ~. Since ‘p. ~ C F
0. there is a diffeomorphismof J

0(it), tran-
[‘p 1

sforming d~1jinto dx and — du Adx into du Adx. So, by a Lie transformation
‘p

~ may be transformedinto an operator with a leading coefficient equal to I.
Now the skew-symmetry implies the second coefficient of such an operator to
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be equalto zeroandtheequations(6) forf1 andf0look as

D(af1/au) = 0,

af1/ap= af1/ap2= af1/ap3= af1/ap4= 0,

f0= —D(f1).

This yieldsf1 = A u +‘p, whereA is a constantand ‘p is a functionon x.

By straightforward calculating we obtain that a contact transformation (x,
u,p) ~—* (y, v, q) preservesthe leading coefficient of the Hamiltonian operator

to equal 1 iff

ay/ap = ay/au= av/ap= 0,

au/au(ay/ax)
2= ±1,

and therefore v = ±u ~2 + ~>, where i,ti and ~= aj;/ax dependonly on x. In

this case~ transformsinto D3 + f

1D + -~-D(f~) with

= ±Au + 2~”/~ 3(~’/~)2 + ~2 . (7~+ ‘p(y)).

This shows that we can only changethe X’s sign and get rid of the summand‘p

via the Lie transformations.

13. THECASEm=n=l,K=5

Calculations in this caseare similar to the previous ones,but essentiallymore
cumbersome.So, we indicatehereonly mainsteps.

Theoperator

A=f5D

5+f

4D

4+f

3D

3+f

2D

2+f

1D+f0

is called non-degenerateif f5 nowherevanishesin its domain.
First, asin sec.9, eqs.(6) with p + r’ ~ 8 imply

PROPOSITION 4. If ~ is a Hamjitonjan operator with coefficients~ r = 0, 1 ~---~

5,thenfrCF7.,..

Next, this proposition and eqs. (6) with 7 ~ p + v ( 12 imply that f5 C F2
satisfies

6f5 a
2f

5/(ap2)
2 = 7(af

5/ap2)
2.
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By solving this equation and supposingf5> 0 onemay obtain that ~ has the
samesymbol as the compositionof the following operators:

‘5 d— ,, ‘5 ,, ‘5

x-* F —~~A’--*x—~-÷x -~ F —÷ A
1—*x —t-*x.

Here is a Hamiltonian operatorof the first order andhomomorphismsx—* F.
A1 —~ are inverseto thosedeterminedby an element~C x which is theequiva-

lence classof a contact field on J1(it). Hence,by Theorem2. ~ may be transfor-

med by a Lie transformationinto an operatorwith a leadingcoefficient belong-

ing to F
1. Eqs.(6) with 5 ~ p + v ‘~ 11 yield for that coefficient:

4f5 a
2f

5/(ap1)
2 s(af

5/ap1)
2.

This implies that f
5 coincideswith the leadingcoefficient of the composition

operator
ci— ci— ci— ci— ci—

~ F A
1 F A’~ F A1~ F A1 F A1 ~x,

where included four homomorphismsA1 -+ F are inverse to thosedetermined

by di/.i C A’, while ~ -# F and A1 —~x are the inversesof homomorphismsdeter-
mined by [‘pdu A dx] E 2, where ‘p, i,L’ E F

0. So, there exists a Lie transforma-

tion determinedby a diffeomorphismof J°(ir) and making the leading coeffi-
cient of ~ to be equal to 1. Then by ~‘s skew-symmetry,f4= 0, andaftersome

manipulationswith eqs. (6). 5 ~ p + v ‘~ 10, one may obtain that in this case

C F1, r = 0, 1,2,3. One may also get rid of theD
3’s coefficient by a diffeo-

morphismsof the baseM. ThenD 2’s onevanishestoo. So we have

THEOREM 4. Let m = n = I. Then any non-degenerateHamiltonian operator

ofthefifth order may betransformedlocally into an operator of theform

d’p
±D5 + 2’pD + —.

dx

with pC F~.

Remark. This form is notunique.

14. THECASEm=K=l,n=2

In this sectionwe write x, j’, D~, D~ insteadof x
1, x2.D,, D2. andomit brackets

and commas in writing multi-indices. The operator ~ =f1D~+f2D~+f0is
said to be non-degenerateif f1

2 + f
2

2 nowherevanishesin its domain.

THEOREM 5. Let m = 1, n = 2. Then any two non-degeneratefirst-order Hamil
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tanian operatorsarelocally equivalentunderthe Lie transformations.

Proof This theoremhasa rathercumbersomeproof, so we drop a lot of details.

In the casethe Proposition2 shows that the Hamiltonian operatorshave the

form ~ =f,D~+f
2D~+ D~(f,)+ ~D~(f2)~ f~,f2C F2. Becauseof its non-

-degeneracyand performing a Lie transformation, if needed,we may assume

that neither f1 nor f2 vanish. We shall prove that there is a Lie transformation

trasforming~ into D~.

Excluding in equations(6) for 3 c p + v s~4 the partial derivatives of f1

andf2 in p11. onecan obtain

_____ af1 af1
f
2. .f~. =

a~~
0ap02 1 ap20 ap02

a
2f

2 af2 af2
f
2.

ap
20 ap02 - ap~ ap02

which is equivalentto

a
2

ln — = 0.
ap

20 ap02 f2

Hence,f~and f2 may be written in the form:f, =iiQ
2. f

2=—~Q
2~with

a~
7 a~

Q, ~. 17 C F2, satisfying = = 0.
ap20 ap02

Insertingtheseinto equations(6) with the samep and v gives:

a
2~ a2

77 a
2~

(ap
2~)

2= (~p

02)

2 = (ap
2~

2= (~p

02)

2 =

a~ 1_ a
77 a~

ap~ ap~) 7) — ap02 ap11 ~

Comparingthe two we seethat bothsidesof thelast equationare independent

of p20 and p02. So, there is a positive function A C F2 also independentof p20

and p02, which satisfies

1 ax a~ a77 1 — a77 a~ 1

~ ap11 — — ap11 7) — ap02 ap,1 ~

Changingnotations, let A~,X77, QV’K be the new functions~. 17, Q. Then the
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above propertiesstill hold, but due to the choice of A we havealso a~,’ap1,=
= a77/ap02,a~/ap20= a77/ap,,,andtherefore:

a
2~ a2~ a2

77 a
2

77

(ap11)
2 = ap

20 ap11 = (ap,,)
2 = ap

1, ap02 =

a
2Q a2Q a2Q

= = +2 =0.
ap

20 ap,1 ap1~ap02 (ap11)
2 ap

20ap02

Thisgivesthe explicit form of dependenceof ~, 77, Q on p0, I a I = 2:

~=ap20+13p11+-y1, ~ap11+13p02+y2.

Q = H (p,~ —p20p02) + h,p20 + 2h2p1, + h3p02 + h4.

whereall new functionsare in F1 andsatisfythe following equationsby (6):

— H~y2—h113+/l2a=0

H”y1 —h213+h3a=0

—h4a=0

—h2~y~—h3y2+h413 =0.

Sinceit is a homogeneouslinear systemwith respectto a, ~. ‘‘~~~ which are

not all zero

0 —H —h1 ‘~2

H 0 —h h

(14) det h, h2 2 / =(h~—h1h3—Hh4)

2=0.

—h

2 —h3 h4 0

Next, equations(6) for ~ + ~ I = 3 havetwo consequenceswhich we write in

the form:

a/i; ah; ah; ah ah;
— +p10 + +p01 — + — —

ax au a~’ au ap10

(15)
a/l; a/i; ai~

- ap10 ap0, ap0,

ah; a/i; ah; a;~
(16) - -1-p10 — + — +p01 — +/z — —

ax au a;’ au ap0~
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ah’ ai~ ah;
(16)

ap01 ap,0 ap,0

h
with hj~= ~ , k = 1, 2, 3 (we assumeH ~ 0, otherwiseit can be achievedby

a Lie transformation).Note that ~ hasthe sameleadingcoefficients as the com-

positionoperator
— d —

~-+ F -+ A’ —+ A
2 —+

where i~-÷ F and K2 -÷x are the inversesof the homomorphismsdeterminedby

[Qdu Adx Ady] C Q and the homomorphism F -÷A1 is determined by ~dx +
+ l7dy C K1.

It is not difficult to show that the establishedform of dependenceof ~, 77.

Q on ~ I UI = 2, is equivalent to the existenceof forms belonging to A(Ji(it))
and generatingthe samehomomorphisms.Moreover, we shall prove the following

LEMMA. Let H, h, h
4 C F1 satisfy (14) - (16). Thereexistsa positivefunc-

tion H’ C F1 such that the elementof ~ generatedby theform Q’du A dx A dv C

C A
3 with

H’ H’ II’ H’

Q’ = H’(p ~ — p

20 p02) + — h, p20 + 2 — h2p1 i + — h3 p02 + h4.

belongsto im E.

Proof. The assertionis equivalent to = .~, which after expandingreduces

to systemsof four differential equations.Two of them in view of (14) -(16)

appearto be linear combinationsof two others,which may bewritten as

X,(H’) =g1H’, X2(H’) =g211’,

where X1 and are linearly independentvector fields and g1, g2 are functions

of h~, k = 1, 2, 3. Equations(15), (16) imply [X1,X2] = 0, X1g2—X2g1= 0.

Thisis sufficient for the existenceof H’.

Further, changingnotationsoncemore, we way assumethat the form Qdu A
Adx Ady generatesan elementof im E. Consider the set 4 of all nowhere
vanishingfunctions ‘p C F1 such that ‘pQdu A dx A dy also generatesan element

of im F. Expanding)~= .f~and dealingwith 4 asin the section 11, we obtain
that thereis a Lie transformationtransforming~ into an operatorhaving the
sameleadingcoefficientsas
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— d —

i—” F —~ A1 —÷ A2—*x,
and determined by [Qdu Adx AdylE ~ and ~dx + ~d.i’ CA1 with Q, ~, ilC F,.
So, the Lie transformationputs the leadingcoefficientsof ~ into F, andreduces

equations(6) for i~+ ~I~ 3 to

af,/ap,
0= af2/ap01 = af1/ap01 + af2/ap,0 = 0.

Thus, f1 = ap01 + b1, f2 = — (ap10 + b2) with a, b1, b2 C F0. So, in the above

decompositionone may assume -+ F and A
2 —~ x to be the inversesof the

homomorphismsdeterminedby [du A dx A dy] E i? andalso F -+ A1 to be deter-
mined by adu+b

2dx+b1dyCA
1, the form w=adu+b

2dx+b1dy belong-
ing to A’(J°(ir)). Now all equations(6) for p + v I ‘~ 2 reduceto one,which
may be written in termsof w as o.~A dw = 0. This implies that in some coordi-
nateson J

0(it) the form w hasthe form fdy, wheref(x, y, u) is a positive func-
tion and thereforeby a Lie transformation~ canbe transformedinto anoperator
with the sameleading coefficientsas the abovecompositionoperatorgenerated

by [f112du Adx Ady] C i? and dyEA’. Finally, performinga diffeomorphism
of J0(ir) transformingf~2du AdxAdy into du Adx Ady and not changing
dy, we transformthe operator~ intoD~.

15. THECASEK=0

In this sectionwe demonstratethat the theory of the zero-orderHamiltonian

operatorsisn’t so trivial as it appearsat first glance.Obviously, suchanoperator
is non-degeneratewhenit is anisomorphism.

THEOREM6. The isomorphism ~ : -+ x is Hamiltonian iff there is a closed

form w C A”~2(J0(ir)) such that ~ maps X mod CD into the elementof

x~,generatedby X I wE A” +

Proof Equations (6) for the zero-orderoperatorreduceto .1.~’C F
1 and also

to two equations.It will be convenient to write these in terms of ~ =

a~ki
(17) =— —- . 1 ~<i,j,k~<m, IaI= l,

ap~ ap~

a~
t1 an/k a&

1k1 n
____ +

auk au
1 au’ s=1 ax

3ap~(3)
(18)

‘a k =0.
au P1(s)
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Taking into account the skew-symmetryof ~ and therefore of ~2 equation

(17) meansthat for any multi-index a, I 01 = 1, the expression a2~ih1/ap~~is

skew-symmetricin i, j, k. Thisimpliesimmediatelythat

a2cz”
UI=IrI= 1

ap~ap~’ ap~ap
0’

and,in particular,

a
2c~~i a2~z1’

= =0.

ap~ap~ ap~apk

So, ~ is a polynomial of p,~, al = 1, with coefficients in F
0. Moreover,

the F0-module of all skew-symmetric homomorphisms~2: x -+ 2 satisfying
(17) hasthe following basis.Any pairof index collections:

l~i,<...<i2~m

l~<si<...<sr~<n,

where0 ~ r ~ mm n, m — 2}, determines the basishomomorphism:

~ 1)qP~c;~.

u[du~~2)Adx1A.. .Adx~],

(the sumis over all permutationsof the set {l r + 2}). On the otherhand,

the F0-moduleA” +
2(E) hasa basis,consistingof forms

a a
— 1.. .J J(du’lA. . .Adu¼2AdxiA. . .Adx ),
ax ax

determinesby thesamepairs.
By straightforwardcalculationsone can prove that such a form determines

up to thesign, the abovebasishomomorphism.
Equation (18) can be guessedas the closureconditionfor the form w which

determines f2. There is a rigorous coordinate-freeproof of this which needs,
however,additionalnotesand facts, andis, therefore,omitted. •

It follows from the proof that different closedforms in A” + 2(E) determine

different Hamiltonian operators.Therefore, two zero-order non-degenerate
Hamiltonian operators are equivalent under the Lie transformationsiff their
(n + 2)-forms are equivalent under the diffeomorphismsof E. Since any two
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volume forms on a manifold are locally equivalent,the following proposition is

obvious:

PROPOSITION5. Let in = 2. Then any two zero-ordernon-degenerateHami/to-

nian operatorsare locally equivalentundertheLie transformations.

The condition fll = 2 is essential. For example, in the case in = 4. ii = 1.

the following threeforms arenon-equivalentto eachother:

w1=(du’Adu
2+du3Adu4)Adx,

w
2=(du’Adu

2+du3Adu4)A(dx+u’du3),

w
3=(d&Adu

2+du3Adu4)A(dx+u’du2+u2du4).

The correspondingHamiltonianoperatorslook as

0 —1 0 0~

1000

1 0 0 0 —1

0010

0 —l—u’p3 u1p2 0 —1

l+u’p3 0 —u1p1 0

2 —u1p2 u~p1 0 —l

0 0 1 0

1 3 2 4 1 ‘ ~‘ —10 —1—u p —up up- u-p-

l+u’p3+u2p4 0 —u1p1 —u2p1

—u1p2 u1p1 0 —l

—u2p2 u2p’ 1 0

16. <<THE DARBOUX LEMMA>>

The results of sections 12, 13. 15 show the set of Lie transformationsto

be insufficient for the hypothetical<<general Darbouxlemma in field theory>>.
The following straightforward results give another candidate,namely. the set

of theND-coverings.

PROPOSITION6. [14]. Let in = ii = 1. Then the map F :J1(ir)-4J0(ir) defined
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by F(x, u, p) = (x, A(u)
2—p), A beinga constant,determinesan ND-covering.

mapping the Hamiltonian operator D into the Hamiltonian operator —D3+

+ 4AuD + 2Ap.

PROPOSITION7. Let m = 2, m’ = n = ii’ = 1, and F :J1(ir)—~.J0(ir’)is the map:

(x, u1, u2, p1, p2) ~ (x, u1 + Ap2), A being a constant. Then F determinesan

ND-covering, mapping the Hamiltonian operator(~~) into the Harniltonian

operator27W.

Remark. It holds alsofor n = n’> I.

PROPOSITION8. Let m = n = 1. Then the map F :J2(it) -#J0(it) defined by

F(x,u,p,,p
2)=(x,p2+f-p1+(f

2/2+2df/dx)-u)

with fE F
1, determines an ND-covering, mapping the llamiltonian operator

D into the Hamiltonian operator

D

5 + ‘pD + — d’p/dx,

2

where

‘p = 2d3f/dx3 + 3(df/dx)2 —4fd2f/dx2 + 3f2df/dx +f4/4.

Now we can formulate the immediate corollary which is just <<the Darhoux

lemma>>for the specialcaseshavingbeenconsideredabove.

THEOREM 6. Let numbersm, n, K be equal to onesof theorems2, 3. 4. 5 or

the proposition 5. In this case any non-degenerate Hamiltonian operator may

beobtainedfrom the operator (~~) by someND-covering.
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