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Abstract. 4 complete description of the Hamiltonian operators is shown and a
«Darboux lemmas is proved (for some values of the parameters) in the framework
of systems with infinite degrees of freedom.

1. INTRODUCTION

The conception of the Hamiltonian formalism as it is well known now, has in
its origin the notion of the Poisson bracket (see [1] for a motivation). In finite
dimensional mechanics this means the following. Let M be the phase space of a
mechanical system under consideration and % = C~(M). The Poisson bracket
structure on M is just a local Lie algebra structure on the real vector space % .
Denoting the corresponding Lie algebra operation by {f,g} € Fforf,g € F we
have

{f.gt=1{—¢r} (skew-symmetry),
{f.g}, ht+{{g. h},f1+{{h.f},g} =0 (theJacobiidentity).

«Local» means here that the operation (f,g) & {f, g} is bidifferential, i.e.
operators Xf F > F, Xf(g) ={f, g}, are differential for all f&€ %#. In fact, it
turns out that all operators Xf are of the first order [2]. Therefore a Poisson
bracket on M may be introduced via the differential operator of the first order
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I': % - D(M), where D(M) denotes the % -module of all C™ vector fields on
Mand '(f) = Xf. Thus,

(1) {£.81=T(f)8).

By this reason an operator I' : % — D(M) is called Hamiltonian if the bracket
{, }defined by (1) is the Poisson bracket. Immediately the following problem
arises: to classify (locally) Hamiltonian operators under diffeomorphisms.

The famous «Darbous lemma» in its Hamiltonian form asserts that two non-
-degenerate Hamiltonian operators are locally equivalent if their underlying
manifolds have the same dimension. By a non-degenerate operator we understand
one satisfying the condition: I'(f), =0 iff d_f=0, f€ F, xeM. 1t is worthy
to point out that any non-degenerate Hamiltonian operator naturally determines
a symplectic structure on its underlying manifold, and conversely. Regular dege-
nerate Hamiltonian operators also may be described {1]. [3].

In this paper we analyze the above problem for systems with infinite degrees
of freedom or, in physical terms, for fields. Surely, it is much more difficult in
this case. E.g., it is not trivial here to find the right formulation of «the Darboux
lemma».

Our main results are the complete description of the Hamiltonian operators
and the proof of «the Darboux lemma» for some small values of n = the number
of independent variables, m = the number of dependent ones, and K = order
of the operator. The greater part of these was announced without proof in [4].
[5]. In what follows, all manifolds, fiberings, maps, etc., are supposed to be C~.

2. PRELIMINARIES

In this section we describe necessary notions and notations.

Let # :E—>M be a fibering, dimM = »n, dim E = m + n, and Sec (w) be the
set of local sections of 7. There are natural fiberings 7, JR(@my > M, Ty s ATC S
> J5(m), 0<s <k <oo, where J¥(m) denotes the k-jet manifold of m. For f €
€ Sec (7) we denote its k-jet at a point x €M by [f]’; and the corresponding
section of m, by J (). Obviously, Ty s o j ()= J(f).

Let x,...,X%,, ul ..., u™ be local coordinates on E, x; being a base coordi-
nate and w’ being a fibre one. Then

x x ...,uizpé,...,pf;,...,1<i<m, |o| <k,

P X
are local coordinates on J*(r). Here 0 = (¢!, ..., ¢")€IN" is a multi-index,
|o|=0'+ ...+ " and the functions p/ are defined by equalities plej(f)=
=3°f where u' = fi(x) are the local equations of f. If n = 1, we write p’
instead of pi and x instead of x,. The same is about upper indices. Sometimes we
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also omit = if there is no risk of ambiguity.

«The manifold» J”(7) is the inverse limit of the sequence . . .»Jk(w‘)ik'k—’—U

. lﬁ—>J0(7r) = FE and by the algebra % () of smooth functions onJ “(m) we
understand the direct limit of the algebra homomorphisms 17,:,“1 : ('“(Jk’l(n‘))a
(C=(J*(m)). Introducing subalgebras P (m) = w:_k(Cw(Jk(w)) CF(m k=01,

., we see that & (m)C F(m), s<k, and therefore the algebra F(m) is
filtered by its subalgebras 9'k(7r). Similarly, the % (m)-module A' = A'(J " (7))
of differential forms of degree i on J (w) is defined as the direct limit of
C=(J*(m))-modules Ai(Jk(n)) by maps n,;k‘k e

Let A =U A, be a filtered algebra, then P=UF is a filtered A-module. if
E is an A;-module and ... CH CH _,C... . For example, Al is a filtered
F(m)-module. If A is commutative and P = U I}c g=u g, are filtered A-mo-
dules, then a linear differential operator A :P— Q over A, [6], is said to be
filtered if for any k, A(F) C Q, ., for some s depending on k. Below, we con-
sider only filtered differential operators over #(m) and denote by Diff, (P, 0)
the set of filtered linear differential operators of order < &k acting from P to Q.
P, Q being filtered % (m)-podules. Obviously, Diff (P, Q) C Diff (P, Q). k <.
Denote also Diff (P, Q) = U Diffk(P, Q). .

In local coordinates on J7(w) described above a «scalar» operator A€
€Diff, (F(n), F(r)) may be presented as Ta, T guaph
ap;’ axll’ . axi", summing by 1 <iy, ..., i, <m,j, ... l,jnéZ+, Ope s ,lore
€ lNr", 0<r+j<k,j=2j, with coefficients from % (m). If P and Q are free
Z (m)-modules over the local chart, then any A € Diff (P. Q) may be presented
by an operator matrix with its entries being scalar differential operators.

0 . a e
Dk= E + i;g p;+f(k) 517—3 is the total derivative in x,. where €e(k) =

=(0,...,0,1,0,...,0) has 1 as its k-th component. Scalar operators locally
expressible in the from T a_ D¢ where a € F(n), D°= Df‘ o. .. c>D:"~ and
g

matrix operators with such entries are called C-differential. The set of C-differen-
tial operators P — Q is denoted C Diff (P. Q). Intrinsicly, an operator is C-diffe-
rential if it can be restricted on every submanifold of J™(7) having the form im
J (f), f € Sec (m).

The % (7)-module D =D(J (7)) ={A € Diff (F (), #(m) : A(1) = 0} con-
sists of all derivations of the algebra % (w) interpreted as vector fields on J = (7).
Let CD =D N C Diff (F (). F(n))and Do =Do(m) ={X €D :[X, CD]C CD}.

Then D is a Lie algebra with the Lie operation being usual commutator, and
CD is its ideal. So, we can define the Lie algebra x () :DC/CD interpreted as
the algebra of vector fields on the «manifold» Sec (7). [6].

In a local chart any field X € CD has the form Z aka, a, € & (w). and any
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field X €D can be uniquely presented as X=3f+ Y, Ye D, where f=
=(fis- o fy), FE€ F(m), and 3.= T D’(£)9/dp, is called an evolution

with a generating function f. Therefore in the local chart the algebra x (7) may
be identified with the Lie algebra of all evolution derivations. We have [Ef, Sg] =
=Difar where [f, gl = Sf(g) -—:—)g(f) is the higher Jacobi bracket and Bf(g) =
= (31(31)’ ... ,af(gm)). In addition, the Lie algebra x(w) is an % (7)-module.
Identifying (locally) elements of x(m) with evolution derivations we have ¢ Bf =
=3, ¥PE F(m).

Next we need to define «functions» on the «manifold» Sec () to get Hamilto-
nian formalism on it. To do that introduce % (7)-modules

CA' ={weAl ¥ w) =0,V fE Sec (m)}.

Evidently, CA=X CA’ is a d-closed ideal in A =Z Al In particular, this
allows us to define the factor-operator d : Ai > A *! of d : AP > Ai+1 where
A= AI/CA'. Locally elements of A’ may be identified with _-horozintal
forms on J7(m) and expressed as Za, , dx, A...Adx,, 4, . € F(m).

1..% 1 i 1..%

In these terms the operator d acts as Ei—(fa’—xk1 A /\(Txk') = [i—f/\c}_xkl A
/\d_xk', Jf: % Dk(f) d_xk. Now we define «the function space on Sec (7)» to

be L = A"/dA"~!. By above locally elements of A” may be considered as Lagran-
gian densities, while their equivalence classes modulo d A" ! as «actions», i.e.
functionals on Sec (). This gives a motivation for L.

Finally, we have to understand how «vector fields» act on «functions» on
Sec (m). Let X (w) denote the Lie derivatives of w & Af along X €D and w =
= w + CA’ denote the element of A’ corresponding to w. If X € CD then «the
infinitesimal Stokes’ formula» X (w) =X _ldw + d(X _J w) reduces to the for-
mula X(@)=X _|d& +d(X _|®), where X(®)=X(w)and X 15=X lp.
It shows that X (@) = d(X _| @) for @ € A", because A" *! = 0.

Therefore, the formula x(£2) = [X(@)] defines correctly the Lie derivative
of Q=[&]€ L along x=X + CD € x(w), where [p] denotes the element of
L corresponding to p € A" by the natural projection A" - [ .

3. HAMILTONIAN OPERATORS

As in the classical finite-dimensional case a Hamiltonian operator on Sec (7)
must act from [ («functions») to »x («vector fields»). Of course, such an operator
must be local, i.e. differential. But L is not an % (7)-module. So, the usual
notion of a differential operator acting on [ is meaningless. However, A" is an
F (m)-module. Therefore, a differential operator on L may be understood as a
differential operator on A" vanishing on dA" ~!. Now we notice that the Euler
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operator & i.e. the operator assigning to Lagrangian densities corresponding
Euler-Lagrange equations, vanishes on d A"~ !, Moreover, in a sense which will
not be discussed here, it is the universal one in the class of operators vanishing
on dA"" ! 1t can be shown that the range of E is %, where P = Hom, (P, A" for
an & -module P. Therefore, differential operators on K", which may be treated
as operators on [, can be supposed having the form V o £, where V is a differen-
tial operator on % . Moreover, the operator V must be C-differential in order
that Vo E would have intrinsic sense. So, the above considerations motivate
the following

DEFINITION. The operator & =V o E A" x (1) with V € C Diff (x, %) is called
Hamiltonian if the bracket |} defined on L by

2 {19, 9,}= W)€,

where 2, = [w,] € L, is skew-symmetric and satisfies the Jacobi identity.

Here A(wl)(ﬂz) denotes the Lie derivative of Qze L along A(wl)Ex(n).

To simplify terminology we will call operator V : % - » Hamiltonian as well
asA=VoE. .

Now we intend to prove a criterion for checking an arbitrary operator A €
€ C Diff (%,x) to be Hamiltonian. To perform this we need some general formulae
described below.

4. THE GREEN FORMULA AND THE EULER OPERATOR

For A € C Diff (P, Q) one can define the adjoint operator A* € C Diff (Q.f’).
This star operation has the usual properties: (1) A = A* for A € C Diff( F A"
(2) A*=—A for A€ CD; (3) (Ao V)* =V*o A*; (4) (A*)* = A, These imply
that (2 a,D°)* = 2(~1)"'D%0a, and (A*); = (4;)* for a matrix operator.

If A € C Diff (P, Q) then the Green formula holds:

(A(D).q)—(p. A*(@)) =dK(goAop), pEP, q€Q.

Here {,) denotes the natural pairing R x R = A" for an % -module R, X : C Diff
(#, K”)—»/_\"'l is a C-differential operator defined up to adding an operator
of the form dov with » : C Diff (%, A™) > A"~ ? being C-differential, and we
identify an element r € R with the homomorphism r : % =R, ¢ = 9r, 9 € Z.

Next, the universal linearization operator Zpe C Diff (x. P) for p € P, P being
an % -module, is defined by Zp(f) = 9f(p). We assume here that 3 acts on
vector-valued functions component-wisely. Now we have the following formula
for Euler operator: E(w) = Zz(l). wE A", Moreover, if A is C-differential then
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(3) E(A(f))z(f*(A*(l})-F(’," (.

A1)

The next property characterizes the image of £: locally ¢ € im € iff {"if: (.
Further. locally w € A" belongs to d(A" 1) iff [ (w) = 0. The formulae mention-
ed in this section are proved in [7]. see also [6].

5. THE SKEW-SYMMETRY PROPERTY

Here we shall deduce a property of A which yields the skew-symmetry of the

bracket { . | defined by (2). We shall write sometimes {w,. w, }instead of {£2,. £2,;

—— 1 J—
if QI. = [wl.] and «=» to denote equality modulo d A" in A"
First of all, by definition {w,p} = Durwie) = (”N(A([ wh). w. p EA", and

{JBEW) = (D AL w) = (Ep. AL w)) by the Green formula for ¢ . ie.
(4) {w.p} =(Ep. A(Ew).

This is the «usual form» ot the Poisson bracket. [8]. [9]. Applving the Green
formula for A to the left side of (4) we see that{w.p! ~ (€ w. A*(Ep)). There-
fore,

fw.oplHip wlx=(Ew. (A + A¥)Ep)).

and we search when this expression ~ 0 identically. Its right side may be present-
ed as V(Ep) with V=(Fw.(A+ A*) (). Then V(Ep) = 0 iff L(V(Lp) =0
(see section 4). Applying (3) to the last expression we have

0=E(V(EP) =F (VXD + b (Ep) forall p e A"

Obviously, every vector-valued function on J ™ (7) depending only on x may be
locally presented as E(p) for some p € A”. But tf = 0 for such functions. This
shows that E{“]*U)(f) = 0 for all fdepending only on x. Since C{",*(l) is C-differen-
tial. this implies that ¢%. , = 0. Therefore [(V(Ep) = /’f‘}(V*(l)). Choosing

1 . . .
pto be = X (u’)zdx1 A. .. Adx, we see that {p is the identity operator.
i 79

Hence 0 = ,C*é (V*(1))y = V*(1).
o

So. V*(1) = (A + A*)(Ew) = 0 for all w € A". As above we see that A + A* =
= 0 because A + A* is a C-differential operator vanishing on all functions of x.
So we have proved
PROPOSITION 1. The bracket | .}A is skew-svinmetric iff A+ A* =0, ie. A
itself is skew-symmetric. =
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6. HAMILTONIAN CRITERIA

Now we are able to prove the basic result of the paper. If a C-differential
operator A maps vector-functions on Af into vectorfunctions on J*(7) (noting
M itself by J 7 (m)). we say that its filtration is less or equal to k& and denote it
asP(A) < k.

THEOREM |. The skew-symmetric C-differential operator A cx =% is Hamilio-
nian iff

(5) [3A¢.A]:L’A¢OA+A0(§, forall ¢€imtL.

Moreover, it suffices to verifv (3) only for elements ¢ € % helonging to the image
of € and polvnomial in x up to {-th order components, £ = deg A + &A).

Proof. In virtue of Proposition 1 we have only to prove that (5) is equivalent
to the Jacobi identity for {.}A. The last assertion of the theorem is true because
both sides of (5) are C-differential of order < { as operators acting on ¢ €im L
and hence are completely determined by their action on the image of 7*.

Further. rewriting the Jacobi identity as O ={ w.{p. X }| —{p.{w. x| —{le. p}.
Xi=(C(w)oNp)—TH{p)oeT(w)—T({w.pUx) with '=AcE we see that
it is equivalent to the operator equality [['(w). I'(p)] =T ({w.p}) for all w.
p € A" Identifying elements of x with evolution derivations and the latters with
their generating functions. we shall calculate the generating functions of both
sides of the last equality. First, the generating function of {['(w).['(p)] is
BTN =3, ,,(T(w)) = (M(w)) =3, (M) = °cA—3
o AXL w). where ¢ = Ep.

Further, by (3) and (4). T({w.p})=A(E(jw.p})) =A(E(Ep. AFW) =
= A( "‘gw(v*un + (& (Ew)). where V = (Ep. A(-)) and V¥(1) = A¥(Ep) =
= —A(Ep).

Since [’EJ = Lp, we have

Yie) Law A’

N

C({w. ph==A({g (AP — g, (Ew)) =
=—(BoD,,— Ao % NEw).

Therefore. {, cA—5, cA=—Ac¢3, —Aoc % as operators on im{ or.
¥ ¥ ¥

Ay
equivalently [BAW Al = L’AVOA + Ao L’jg. But operators at both the sides of
this equality are (-differential. So they coincide completely. not only on

m E. ]

Now we shall illustrate the proved theorem at work.



270 A.M. ASTASHOV, A.M. VINOGRADOV

Example. Supposing the fibering 7 to be linear we consider a differential operator
V:S->Sec(n), S= HomCN(M)(Sec (m), A™(M)). Then the formula j(/)* OV =
=Voeoj(fNH* deﬁnes the operator V € ¢ Diff (7,%). Ev1dently if V is skew-sym-
metric, then V is too. It is easy to show [10] that [9 V] =0 for all f. This
leads to the equality Zv()—v /’é So ¢, oA+A E* =Ao (L —ﬁ*)o . if
A =V. But E)P~ K; ifp€im E. Thls shows that every skew symmetrm operator
of the form V is Hamiltonian (com. [11]). In what follows our main results will
be derived from this theorem. For applications we need its coordinate expression.

COROLLARY. The (m x m)-matrix skew-symmetric operator A =|| Al.]. A
=Z AgD", is Hamilronian iff
a

m aAk 1y aAki
ZZ D o~ uAll pDAro uAIj H ¥+
— u—o0 v—o “ !

A, apx ap)\
(6)

if
)\+0‘#)Ak1D}\+0+T'P v aAT -0
A—T 7 ap/{

‘ A+ o0
+ (_ 1)1)\\ ( )
Z IJ’
for all 1 <i, j, k<m and all multi-indices u, v. Binomial coefficients for multi-

) 15)

It suffices to check (6) for u and v with \p+v1<degA+max;]'r+M:
aA”
R :

o
-indices are defined by ( 3) =

Now we proceed to describe Hamiltonian operators for some small values of
m, n and k = deg A. We begin with establishing some relations between ®(A)
and filtrations of A’s coefficients. In doing that some facts concerning the C-
-Hamiltonian formalism will be useful.

7. THE C-HAMILTONIAN FORMALISM

This is a variant of the «usualy Hamiltonian formalism lifted on J *(r). Namely,
let

Smbl, () = C Diff,(F, F)/CDiff, _,(F, F), Smbl (m) = ) _ Smbl,(m).
k=0
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For AeC Diffk(F, F) we write sk(A) for its image in Smblk(n). It is easy to see
that sk1+k2([A1, Az]) =0 if Ai el Diffki(F, F). Therefore, the composition of
operators induces the commutative multiplication in Smbl (7), Smblk(n) .

. Smbll(vr) C Smblk+ 1(")' Moreover, Smbl (7) is a Lie algebra. The corresponding
bracket is defined by [Sk(A),S,(V)] =5, 141([A, V1. Evidently, sk(A*) =

= (— ks, (A).

In local coordinates elements of Smbl(7) may be described as polynomials
of p; =s1(Di), i=1,...,n, with coefficients in F(m), and for f, g € Smbl (m)
we have

n o af dg
[f.g]= (— D.(g) — — D,(1)},
i; ap; 0p;

where it is supposed that D, (p’.) = 0. For more details see [1].

8. FILTRATION OF HAMILTONIAN OPERATORS OF THE FIRST ORDER

We suppose here that 7 is a one-dimensional fibering and A € CDiffl(i,X)

is Hamiltonian. In virtue of its skew—syinmetry, A has the form Z |f,D, + >

D;(f}))]- Below we work in a local chart, identifying x and % with F.

LEMMA. ®(A):s odd.

Proof. 1t follows from definitions that deg {?A¢<¢>(A), if p€C™(M). and the
equality holds for some . Further, for such ¢ we haves, b(ﬂw oA+ Ao} )=
=5,(8) ~Sb(£’Aw + £2\0), a=deg A, b= ®(A). Therefore, supposing ®(A) > 1.
for validity of (5), it is necessary that s, (L, cA+ Ao £Zw) = 0 because
otherwise deg [BAW Al < deg A < deg (£,A¢o A+ Ao Ezw). So, if ®(A)>1, then
0= sb(/dA\p + Ezw) = sb(ﬁw) + (— l)bsb(ﬁw). The case ®(A)=0 is evidently
impossible. =

Remark. The condition deg A = 1 is unessential for this lemma.
PROPOSITION 2. ‘I)(fi)<2.i: 1...., n.
Proof. We write ®(f) =k if fEF \F,_;. Let A =X+o2, X=2fD,, a=

= EDi(fi). The next two cases arise now:
(1) (general) ®(a) = max <I>(fi) + 1 and

(2) () <max ®(f)).
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First, suppose that (1) holds and u = max ®(f,)>2. Then d(a)=pu+ 1
and by the lemma u is even. This shows that S, s 2(/dwo A+ Ao Kj‘;w) =0, ¢0€
€C™(M), or equivalently, that deg (KAW oA+ Ao Kj;‘p) < u+ 1. Therefore,
because of deg [SM, A] =1 the equality (5) may hold only if 8,4 1(’1,'% o A +
+ Ao Ezw) =0.

If p=2¢y € C™(M), then {’AY, =y, +2 Lyy- Substituting it into €y,° A+
+ Ao ilj;w and performing some elementary calculations we obtain

Lpgo B+ Ao i =y - (Xo(L + 5+ £, XD+

¢4 ¢4
(7) +;E:O\,’/‘Fwﬂa°7+2((’,Xw0X+X°(,;¢)+

F X)L+ X o [LE U]+ Ly, ot ao b

o *
2
deg £, =p+ 1 and u is even. Similarly, deg (£, + {*) < p. Also deg (Ly, oo+

+ « K;w) < u, because ® (X () < . Using these remarks we obtain

o « «
Now, (\[/an = —;L’;‘ow. So, deg Y ﬂ;"ow+l,l/0£'ao7 < u because

S, a0 B+ A0 L7 ) =1 (s (X)s (¢, + £5) +

(8) s, XD + 45 (X) s (Ly)) — X (W) s
—5,(X)s,([£L,. ¥ = 0.

Let 5,(X)=w=2fp;. 5,

¥ = x_ we have s“([ﬁa, Y1) = av/op,.
In these notations (8) may be rewritten as

(£,) —

u+1

(£)=v, s“(ﬂfl_) =v;. Then v=2v,p, and for

wos (L + 2+ ow] =0, for =1,

and as fsv +w av/aps =4wy, for Yy=x, s=1,..., 1. Multiplying these

v
equalities by p, and then summing we get the equality w -(v +Zp ) =4 wu

S 3p

ov s

or, equivalently E;os 3 = 3v. Therefore, by «the Euler theorem» v as a func-
P

s
tions on Py is homogeneous of degree 3. Thus deg £, < 3,ie. P(A) < 3,<1>(fi) < 2.

To finish the proof it suffices to show that the assumptions (&) < max ®(f;) =
t

= u > 1 are impossible. If so, 4 is odd by the lemma, and

*
o
o
2

[44 [44 ¢4
deg wﬁao—+—£:ow):deg(wﬁao—+
22 2

Similarly, deg (wa o+ o K}"w) < u. Taking it into account one can deduce
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from (7) by the direct calculation that s(y) = s“(ﬂwo A+ Ao Ezv) =AY+

0 0
+Zz (Cs a—w + [a—w ,wv{l). where 4 and Cs do not depend on ¢, and w =
s X, X,

= 5,(X), vs:s“(/éf ). Since s () needs to be zero for all y € C™(M), if u> 1, it fol-
lows that 4 = Cs =20 w/axs, wvs] = 0. Substituting ¥ =x.x, into the last
alwv ) N 6(ka)

30, op

and hence wu, = X of p,. where of do not depend on p. 1<j<n, and o +
1l

= 0 foralls, k£

equality we obtain [wuv . x ]+ [wu,. x| =
s

+ O‘Jf = 0. But by assumption not all v, vanish. Therefore. if v, # 0, then wy,
is a non-zero homogeneous polynomial of p; of degree u + 1 > 2. n

9. FILTRATION OF THE THIRD-ORDER HAMILTONIAN OPERATOR
In this section we supposem =n = 1.

PROPOSITION 3. If A=f,D*+f,D*+f,D + f, is Hamiltonian, then f € F, _
k=0,1.2.3.

k

Proof. 1t is easy to see that every skew-symmetric operator of the third order has
3 1 1
the form A :f3D3 + 3 D (f3)D2+le + 7 D(fl) — ZD3(f3). Because of

proposition 2 we can assume that f; has no zeros in the domain of consideration.
Let s be the least number with f € F;_,. First, suppose that s > 8. Then equations
(6) with v=20, 1, 2, 3 and u =5+ 3 —v form a linear homogeneous algebraic
system with respect to f;0f;/dp, , and f,9f,/dp | which is of the rank 2.
Therefore. 8fj/dap,_y=0f/dp,_,=0f,/op,_,=2df,/dp, =0, but this con-
tradicts to the choice of s, and hence s < 7.

Further, all equations (6) with g + v = 10 are proportional to

(9) 60f,/op, —S3f;/9p, = 0.
For u + v = 9 we have a system which may be reduced to
(10) 380f,/op, — 23 8f;/op, —28D(df,/9p,) = O,
(1n 6f,8f;/9py + 19D (f;)8f,/9p, — 14£,D(3f,/9p,) = 0.

Similarly, all equations arising from (6) for u + v =8 may be reduced to
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38
76£,81,/3p, — 76 0f,/9p, — < hohlon,—

(12) —9D(f;) 3f,/dp, — 96 £, D (3f,/dp,) +
+40D(f,) D (3f,/3p,) — 80f,D(3f,/3p,) = 0.

Differentiating (11) in pg and (12) in pg, and substituting in the result 9f,/dp,
instead of afl/ap(, in accordance with (9) we obtain two linear independent
algebraic equations on f; 3%£,/(3p,)? and (3£,/3p,)? yielding 3f,/3p, = 0.

Accounting the latter, system (9) —(12) reduces to Z)fl/ap4 = af3/ap2,
af,/0ps = 0f,/0p; = 3f,/dp; =0 and as a consequence, 9df,/3p,=0f,/0p =
= Q. | ]

Vo
Remark. The Hamiltonian operator A = (— D) o — shows that proposition

1) P,
3 gives an exact estimate for <I>(fl.). This also shows the description of the third-

-order Hamiltonian operators given in [12] to be incomplete.

10. HAMILTONIAN MAPS

To prove «the Darboux lemma» we need the notion of a Hamiltonian map
which is analogous to that of a canonical transformation in classical mechanics.
The most natural is to introduce it in terms of the category of non-linear differen-
tial equations (ND), [6]. For simplicity we consider only ND-coverings for
«simple» objects of (ND), namely, for F (7). Because of all considerations being
local we often deal with localizations of L, x, % etc. using the same notations
for them.

So, let # and «' be fiberings over the bases of the same dimension ». and
F:J=(@)~J=(n') be a C* map. This means that fo F € F(x) forany f€ F (7).
Thus we have the homomorphism £* : & (n') > Z () prolongable to the Gras-
sman algebra homomorphism F* : A(J=(x")) = A(J (7)) commuting with
the exterior differential d. The map F is called an ND-covering if F*(CA(n")) C
C CA(m) and at any point 8 €J7(w) the cormresponding factor operator
AP(@')| gy~ A"(m) |, has the trivial kernel.

Every ND-covering is uniquely determined by the restriction £* }Fo("') or
by the corresponding map Fy :Jk(ﬂ)—>10(7r'), and conversely, such a map for
which the element FJf(dx,A... /\dxn)eK"(ﬂ) does not vanish, determines
an ND-covering F satisfying F* IFo(”') =Fy.

In particular, an ND-covering may be obtained from a diffeomorphism of
the fibre spaces or, if m =1, from a contact diffeomorphism of the 1-jet
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manifolds. ND-coverings of that kind are called Lie transformations. Sometimes
we shall identify the mentioned difffeomorphisms with the corresponding Lie
transformations.

It follows from definitions that, given an ND-covering F :J~(m) > J"(7").
one can define a linear operator F* : [ (n') — L (x). Suppose 7 and 7’ are equip-
ped with the Poisson brackets {,} and {,}’, respectively. The ND-covering F is
called Hamiltonian if F*{hl, hz}' = {F*hl. F*h,}for all h), hye L (n"). In this
case the bracket {,}’ is said to be obtained from {,} by F.

Note that a Lie transformation F' determines in a natural way module isomor-
phisms F, :x(m)— »(n') and F* :%(n') - #(m) over the algebra homomorphism
F* . F(r')—> F(m). So the property of being Hamiltonian may be formulated in
terms of the corresponding Hamiltonian operators:

A'=F,0AoF*,

3
For example, the Hamiltonian operator ( p— D) o — in the previous section
2
may be obtained from D3 by the contact tralznsfonnatfon (x,u,p) = (p,u—px,
—X).

Generally an ND-covering does not induce any natural map of «vetor fields».
On the contrary, there exists the natural opeator F* :%(n') - (m). It is due
to the fact that every form w &€ A"+ ! generates an element [w] = A* (1) € &,
where A & C Diff (». A™) is defined by A (Xmod (CD)=X Jw mod CA",
If w, w, € A" T 1 generate the same element of %, then it holds also for F*(wl)
and F*(wz), F being an ND-covering [13]. For Lie transformations this definition
of F'* :%(n') - %(m) coincides with the above.

Now, the ND-covering F is Hamiltonian iff F*(A'a. 8) = (AF*«, F*8) for
all o, €% (n"). We emphasize that, in general, F* : x(n') - x(n) is not a module
homomorphism and therefore deg A’ doesn’t need to be equal to deg A. A’
being obtained from A by an ND-covering. Moreover, the existence of A’ for
arbitrary A and F is not guaranteed. Now we proceed to establish normal forms
of Hamiltonian operators under Lie transformations.

11. THECASEm=n=K=1

The operator & = f| D + f, is said to be non-degenerate if f; nowhere vanishes
in its domain.

THEOREM 2. Let m =n = 1. Then any two non-degenerate Hamiltonian opera-
tors of the first order are locally equivalent up to the sign under the Lie tran-
sformations.
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Proof. In the case accordingly to proposition 2, the Hamiltonian operators have
1
the form A =fD + = D(f), with fe F, Because of non-degeneracy we may

assume f to be positive. We shall prove existence of a Lie transformation transfor-
ming A into D.
By direct calculations we obtain that system (6) for A is equivalent to

3D(f)~fw—2f-D(fw)+2f-fp=0.

where w = p,. which may be reduced to

(13) D@,)—-0,=0
by the substitution f = Q2.

Differentiating (13) in p, gives wa = 0, which yields @ =aw + b. with a,
beF,.

Now, let ® be the set of all not vanishing functions ¢ € F,(m) such that the

1 1
operator — o Ao ‘1—0- is Hamiltonian as well as A. Inserting ¢Q into (13) we
@

obtain that ¢ € ® iff X¢p= 0, where X =a 9/0x + pa 8/ou —b 3/dp is a vector
field on J (7). Obviously, X _J(du — pdx) = 0.

Now we use an elementary fact from contact geometry leaving the reader to
prove it.

LEMMA. Let X be a vector field on J1(w) and X _J(du —pdx) = 0. Then in a
neighbourhood of any point where X does not vanish, there exist contact coordi-
nates (X, t, p) such that X = 9/0p.

In these coordinates the function é, determining operator A, does not depend

on w. Moreover, in view of (13), Q € FO. Therefore, this contact transformation
1

reduces A to f(x,u)D + ) D(f). Finally, straightforward calculations show

that the diffeomorphism (x, u) = (x, [ f~ 172 du) of J%(x) transforms A into D. =

Remark. Two Hamiltonian operators U and — D are not equivalent via contact
trasformations.

12. THECASEm=n=1,K=3

The operator A = f3D3 + sz2 + f]D + f0 is called non-degenerate iff3 nowhere
vanishes in its domain.
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THEOREM 3. Locally any non-degenerate Hamiltonian operator of the third
order, m =n = 1, may be transformed into an operator of the form:

+D3+ 2 uD + Ap,

by a Lie transformation, N\ being a non-negative constant. This form is unique.

Proof. Eqs. (6) for 6 < u + v < 8 and the proposition 3 imply that the Hamilto-
nian operators have the form:

A=£D3+£,D?+£D+f,
where f, € F¢_, and f; satisfies
5(3£,/0p,)% = 4£,0°£,/(3p,)*.

Supposing f,> 0, we obtain f;=(ap,+b) % a, bEF,. It is easy to see that
there exists a function ¢ € F, such that Q=¢- (ap2 + b) satisf_ies (13).So A has

. A d — . &

the same symbol as the composition operator x— % = F —> Al » 2 —> .,
1

where A= —oDo —Q- is a Hamiltonian operator of the first order and the

homomorphisms »* - F, Al'— % are inverse to those determined by ¢ = 3.
mod CD € x. ¢ = ;p‘ze Fye In virtue of the Theorem 2. Al may be transformed
by a Lie transformation into D, while { would preserve its form with another
function y € F, since this form is equivalent to the existence of a contact field
X €¢. So, the operator A after the transformation will have a leading coefficient
(still denoted f;) belonging to F,. Now, equations (6) for S<u+v <7 imply

213+ 92£,/(3p)* = 3(3f,/0p),

which yields f3 =(ap+B) L a Be For Choosing a function ¢ € F, such that
d{padu + pBdx) =0, we obtain: ¢-(ap +8)dx = padu+ pfdx =dy for
some Y € Fo- Therefore, f; coincides with the leading coefficient of the composi-
tion operator

d — d — d —
;?—»F—>A1—>F———>A1—> F——->A1—>x,
where the two homomorphisms Al> F are inverse to those determined by
Jll/ € Al while # > F and A! > x are the inverses of homomorphisms determined
1
by [— du A a’x] € %. Since ¢, ¥ € F,, there is a diffeomorphism of JO(m), tran-
¥

1
sforming d ¥ into dx and — du Adx into du Adx. So, by a Lie transformation
14

A may be transformed into an operator with a leading coefficient equal to 1.
Now the skew-symmetry implies the second coefficient of such an operator to
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be equal to zero and the equations (6) for f, and £ look as
D(af,/ou) = 0,
df,/9p = 8f,/op, = 3f,/3p, = 8f,/0p, = O,
1
o= 5 D(f).

This yields f; = A u + p, where A is a constant and ¢ is a function on x.

By straightforward calculating we obtain that a contact transformation (x,
u,p) »(y,v,q) preserves the leading coefficient of the Hamiltonian operator
to equal 1 iff

dy/dp =0y/du = dv/dp = 0,
v/du(dy/ox)2=1+1,
and therefore v=+u§ %24 {, where ¥ and £ = 3y/9x depend only on x. In

1
this case A transforms into D3 +,,D+ 7 D(f)) with

fi=t M+ 28" =3B+ £2- Ay + o).

This shows that we can only change the A’s sign and get rid of the summand ¢
via the Lie transformatijons. .

13. THECASEm=n=1,K=5

Calculations in this case are similar to the previous ones, but essentially more
cunbersome. So, we indicate here only main steps.
The operator

A=fD3+fD*+f,D*+f,D*+f,D +f,
is called non-degenerate if f5 nowhere vanishes in its domain.

First, as in sec. 9, eqs. (6) with 4 + v = 8 imply

PROPOSITION 4. If A is a Hamiltonian operator with coefficients f,, r =0, 1, .. ..

5 thenf,eF, ..

Next, this proposition and egs. (6) with 7<pu+v <12 imply that & F,
satisfies

61, 8%1,/(3p,)* = 1(3f,/3p))*.
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By solving this equation and supposing f5> 0 one may obtain that A has the
same symbol as the composition of the following operators:

-3 E—IAAI d — . 4
X—a> > F —-> A > —x>F —> A > —>x.
Here A, is a Hamiltonian operator of the first order and homomorphisms » - F.
Al % are inverse to those determined by an element & € x which is the equiva-
lence class of a contact field on J!(w). Hence, by Theorem 2, A may be transfor-
med by a Lie transformation into an operator with a leading coefficient belong-
ing to F,. Egs. (6) with 5 <u +» < 11 yield for that coefficient:

4£,3%f/(dp)* = 5(3f,/ap)*.

This implies that f; coincides with the leading coefficient of the composition
operator

d — i — a - d — a —
o> F—AlF SAlsF SAlsF—SAloF S Alox,

where included four homomorphisms A!— F are inverse to those determined
by dye Kl, while # - F and A' > x are the inverses of homomorphisms deter-
mined by [pdu Adx]€ %, where ¢, ¥ € F. So, there exists a Lie transforma-
tion determined by a diffeomorphism of J%(w) and making the leading coeffi-
cient of A to be equal to 1. Then by A’s skew-symmetry, f, = 0, and after some
manipulations with eqgs. (6), S<u+ v <10, one may obtain that in this case
fr €F_,, r=0,1,2,3. One may also get rid of the D*’s coefficient by a diffeo-
morphisms of the base M. Then D ?’s one vanishes too. So we have

THEOREM 4. Let m =n = 1. Then any non-degenerate Hamiltonian operator
of the fifth order may be transformed locally into an operator of the form

dy
+ D3+ 20D 4+ — |
dx

withp € F_,.

Remark. This form is not unique.

14. THECASEm=K=1,n=2

In this section we write x, », D_, Dy instead of x,, x,. Dl, D2. and omit brackets
and commas in writing multi-indices. The operator A =f D, +f2Dy + f0 is
said to be non-degenerate if £ + f,” nowhere vanishes in its domain.

THEOREM 5. Let m =1, n = 2. Then any two non-degenerate first-order Hamil
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tanian operators are locally equivalent under the Lie transformations.

Proof. This theorem has a rather cumbersome proof, so we drop a lot of details.
In the case the Proposition 2 shows that the Hamiltonian operators have the

1 1
form A =f1Dx+f2Dy + 3 Dx(fl) + 5 Dy(fz)~ f1 f2€ Fz' Because of its non-

-degeneracy and performing a Lie transformation, if needed, we may assume
that neither f| nor £, vanish. We shall prove that there is a Lie transformation
trasforming A into D .

Excluding in equations (6) for 3<1#+ V[<4 the partial derivatives off1
and f2 in p;,. one can obtain

2
(A2 )
: 3Py 0Py, 0Py Py
—2 iﬁé af2 af2
=f " \— S — - —|.
0Py 0Py, 9Py 0Py,

which is equivalent to

a2 f

2

Hence, f; and f, may be written in the form: f, = nQ 2 5= —£Q 2, with

on ot
Q. & n€F,, satisfying — = — =0
9y 9Py

Inserting these into equations (6) with the same u and » gives:
92¢ 929 920 920
@pg?  Gp)?  (pg?  (0pg)?

X3 an 1 on o0& 1
) a4

Comparing the two we see that both sides of the last equation are independent
of p,, and p,. So, there is a positive function A € F, also independent of p,,

In = 0.

0Py 9Py,

and p,,, which satisfies

1 9A (85 an)l (an BE)I

.

Changing notations, let A, An, Q\/X be the new functions £, 1, . Then the

dpy,  Opy

A Opy

Opy 0Py M
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above properties still hold, but due to the choice of A we have also 82/8[)“
= 9n/dpy,. 0¢/dp,, = 9n/dp,,, and therefore:

82k 3%k 3%n 3’n
- = = =0,
(3p,)°  3p,, dpy, (@p,)?  0p,; dpy,
320 820 920 32Q
= = - +2
0Py 0Py 0Py dpy,  (3pyy)

= 0.
9Py 0P,
This gives the explicit form of dependence of £, 7, Q onp,,|o|= 2:
E=apy,+Bp,+7. n=ap+Bpg,t v,
Q =H - (py —=PyPe) + I P+ 20,0y + hypgy + by
where all new functions are in F, and satisfy the following equations by (6):

— Hyz—hlB +hya=0
H~, —h26+h3a=0
h171+h272 _h4a:0
—h271—113'y2+h46 = 0.
not all zero

Since it is a homogeneous linear system with respect to «, §, Yy Vo which are

0 —H —h;, h,
H 0 —h, hy
(14) det =th2—h h,—Hh)?=0.
hy hy 0 —hn, 2 4
—h, —hy; h, 0

the form:

Next, equations (6) for | M+ V| = 3 have two consequences which we write in

oh'

| ok’ 611'2 811'2 8h'1
— tpp— + — +p,— + — hj—
ax du oy M ou  opy
(15) ' ' '
6112 alz1 ’ , 6112
—h, — — — h2+h1 =0.
o, 9Py 0Py
on. 811'2 8h; oh. ah’3
(16) — + + +p +h, — —
ox 10 ou 93 o 3
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ah; ah'2 ah'2
(16) —h'2—+—h'3—h;_~—=0.
ap()x apio aplO
. . hy ..
with hk= W k=1, 2, 3 (we assume H # 0, otherwise it can be achieved by

a Lie transformation). Note that A has the same leading coefficients as the com-
position operator

-~ w194
¥>F->AN — A°—> x,

where # > F and A?— x are the inverses of the homomorphisms determined by
[Qdu Adx Ady] € % and the homomorphism F — Al is determined by &dx +
+ ndy € AL

It is not difficult to show that the established form of dependence of &, 7,
Q on p_, | 0| =2, is equivalent to the existence of forms belonging to A ()
and generating the same homomorphisms. Moreover, we shall prove the following

LEMMA. Let H, hy, ... h,€F, satisfy (14) - (16). There exists a positive func-
tion H' € F, such that the element of % generated by the form Q'du ANdx Ndy €
e A3 with
) H' H' H' H’
Q' =H(p:—p, Py +— h, D +2— h p,+— hypy,+— h,.
11 20F02 g 17w g T Ty e T

belongs to im €.

Proof. The assertion is equivalent to EZ. = KQ,, which after expanding reduces
to systems of four differential equations. Two of them in view of (14) -(16)
appear to be linear combinations of two others, which may be written as

X\H)Y=g H', X,H)=g,H

where X1 and X2 are linearly independent vector fields and g,, g, are functions
of h,'c, k=1, 2, 3. Equations (15), (16) imply [XI’X2] =0, X,8,—X,g,=0.
This is sufficient for the existence of H'. n

Further, changing notations once more, we way assume that the form Qdu A
Adx ANdy generates an element of im £. Consider the set ® of all nowhere
vanishing functions ¢ € F1 such that ¢Qdu A dx A dy also generates an element
of im E. Expanding K«:Q = IZ:Q and dealing with ® asin the section 11, we obtain
that there is a Lie transformation transforming A into an operator having the
same leading coefficients as
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o] Al a A2
> F o> A — Ao,

and determined by [Q du Adx Ady] € % and £dx + ndy € A' with Q, §, nE€ F,.
So, the Lie transformation puts the leading coefficients of A into F1 and reduces
equations (6) for|u +v|> 3 to

3/i/8pyg = 31,/3pg = 8f,/3Pg + 8,/ 3Py = 0.

Thus, fi =apy, +b,, f,=—(ap),+b,) witha, b}, b,€F,, So, in the above
decomposition one may assume ¥ > F and A?— x to be the inverses of the
homomorphisms determined by [du Adx Ady] € #and also F - A! to be deter-
mined by adu + bza’-x +b,dy € Al, the form w = adu + b,dx + b, dy belong-
ing to Al(J%m)). Now all equations (6) for |u + v|< 2 reduce to one, which
may be written in terms of w as w A dw = 0. This implies that in some coordi-
nates on J%(w) the form w has the form fdy, where f(x, y, u) is a positive func-
tion and therefore by a Lie transformation A can be transformed into an operator
with the same leading coefficients as the above composition operator generated
by [f"Y2du Adx Ady) € % and dy € Al. Finally, performing a diffeomorphism
of JO() transforming f Y2du Adx Ady into du Adx Ady and not changing
dy, we transform the operator A into D .

15. THECASEK =0

In this section we demonstrate that the theory of the zero-order Hamiltonian
operators isn’t so trivial as it appears at first glance. Obviously, such an operator
is non-degenerate when it is an isomorphism.

THEOREM 6. The isomorphism A :x— x is Hamiltonian iff there is a closed
form w € A" 2(JO(w)) such that A~! maps X mod CD into the element of
%, generated by X Jw € A"+ 1,

Proof. Equations (6) for the zero-order operator reduce to AT e F, and also
to two equations. It will be convenient to write these in terms of £2 =A"1

af oL
(17) Sk T i 1<ijk<m, |o|=1,
p, P,
any RXolk QK n 924
k + i + i ( " k +
ou ou ou’ &= \ox op

(18) 6291']' )

m
1
+ Z ps(-\‘)
=1

au' apk
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Taking into account the skew-symmetry of A and therefore of £ equation
(17) means that for any multi-index o, |o|=1, the expression am"i/ap;‘ is
skew-symmetric in Z, j, k. This implies immediately that

a2Qi1' aZQij
= g|l=|T :1
k 1 k 1 l I ‘ |
op, op, op; 3p,

and, in particular,

aZQi]’ aZQi]'

opy 3p,  Op) opf

So, 7 is a polynomial of pk. |o| =1, with coefficients in Fo- Moreover,
the F,-module of all skew-symmetric homomorphisms £ : x— % satisfying
(17) has the following basis. Any pair of index collections:

1<il<...<i”2<m
1<s1<...<sr<n,

where 0 <r <min{n, m — 2}, determines the basis homomorphism:
— 14 pla iq(r) gyfatr+ 1)
Z( DIPLY . P& du
q

®[du 1D Adx A .. Adx,),

(the sum is over all permutations of the set {1, ...,r + 2}). On the other hand,
the Fo—module A"t 2(E) has a basis, consisting of forms

d ;) . .
— ... — (@A AduTTP Adx AL Adx),
0x, 9x,
1 r

determines by the same pairs.

By straightforward calculations one can prove that such a form determines
up to the sign, the above basis homomorphism.

Equation (18) can be guessed as the closure condition for the form «w which
determines 2. There is a rigorous coordinate-free proof of this which needs,
however, additional notes and facts, and is, therefore, omitted. u

It follows from the proof that different closed forms in A" * %(E) determine
different Hamiltonian operators. Therefore, two zero-order non-degenerate
Hamiltonian operators are equivalent under the Lie transformations iff their
(n + 2)-forms are equivalent under the diffeomorphisms of E. Since any two
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volume forms on a manifold are locally equivalent, the following proposition is

obvious:

PROPOSITION 5. Let m = 2. Then any two zero-order non-degenerate Hamilto-
nian operators are locally equivalent under the Lie transformations.

The condition m = 2 is essential. For example, in the case m =4, n = 1.
the following three forms are non-equivalent to each other:

w, = (du' Adu? + du? Ndu*) Ndx,

w, = (du’ Ndu? + du® Ndu) A (dx + u'du),

w, = (dud Ndu® + du’ Ndu®) A (dx + uldu® + u?du?).

The corresponding Hamiltonian operators look as

0 —1 0 0
I 0 0 0
4510 0 0 -1
0O 0 1 O
0 —1—ulp? ulp? 0 \ -1
1 +ulp? 0 —ulpt 0
A,= —ulp? ulpl 0 —1
0 0 1 0
0 C1—ulpioulpt wlp? wp? !
1+ ulp?+ up 0 —ulp! —up!
ay= —ulp? ulp! 0 -1
—u2p? u2p! 1 0

16. «THE DARBOUX LEMMA»

The results of sections 12, 13,

15 show the set of Lie transformations to

be insufficient for the hypothetical «general Darboux lemma in field theory».

The following straightforward results give another candidate, namely. the set

of the ND-coverings.

PROPOSITION 6. [14]. Let m =n = 1. Then the map F :J(n)-J%n) defined
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by F(x,u,p) = (x, 7\(u)2—p), N being a constant, determines an ND-covering,
mapping the Hamiltonian operator D into the Hamiltonian operator — D3 +
+4AuD + 2Ap.

PROPOSITION 7. Let m =2, m'=n=n"= 1, and F :J (m)~>J%x') is the map:
(x,ul u? pl.pH) & (x,u' + ApD), A being a constant. Then F determines an

ND-covering, mapping the Hamiltonian operator ( i ) into the Hamiltonian

operator 2AD.
Remark. It holds also forn =n'> 1.

PROPOSITION 8. Let m =n = 1. Then the map F :J%(w)—J%m) defined by
F(x,u,py,py) = (x,p, + £ py + (f 2 + 2dfldx) - u)

with f€F_,, determines an ND-covering, mapping the Hamiltonian operator
D into the Hamiltonian operator

1
D3+ 9D + ;dnp/dx,

where

@ = 2d°fldx> + 3(df/dx)? — 4 fd*fldx? + 3 f dfidx + [ Y4.

Now we can formulate the immediate corollary which is just «the Darboux
lemma» for the special cases having been considered above.

THEOREM 6. Let numbers m, n, K be equal to ones of theorems 2,3,4.5 or
the proposition 5. In this case any non-degenerate Hamiltonian operator may

) 0 ) by some ND-covering.

be obtained from the operator (
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